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Abstract

Many scientific applications are I/O intensive and gen-
erate large data sets, spanning hundreds or thousands of
“files.” Management, storage, efficient access, and analysis
of this data present an extremely challenging task. We have
developed a software system, called Scientific Data Man-
ager (SDM), that uses a combination of parallel file I/O and
database support for high-performance scientific data man-
agement. SDM provides a high-level API to the user and, in-
ternally, uses a parallel file system to store real data and a
database to store application-related metadata. In this pa-
per, we describe how we designed and implemented SDM to
support irregular applications. SDM can efficiently handle
the reading and writing of data in an irregular mesh, as well
as the distribution of index values. We describe the SDM
user interface and how we have implemented it to achieve
high performance. SDM makes extensive use of MPI-IO’s
noncontiguous collective I/O functions. SDM also uses the
concept of a history file to optimize the cost of the index dis-
tribution using the metadata stored in database. We present
performance results with two irregular applications, a CFD
code called FUN3D and a Rayleigh-Taylor instability code,
on the SGI Origin2000 at Argonne National Laboratory.

1. Introduction

Many large-scale scientific applications are I/O intensive
and generate large amounts of data (on the order of several
hundred gigabytes to terabytes) [8, 25]. Many of these ap-
plications perform their computation and I/O on an irreg-
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ularly discretized mesh. The data accesses in those appli-
cations make extensive use of arrays, called indirection ar-
ray [7, 24] or map array [10], in which each value of the
array denotes the corresponding data position in memory or
in the file.

The data distribution in irregular applications can be
done either by using compiler directives with the support
of runtime preprocessing [11, 12] or by using a runtime
library [7, 24]. Most of the previous work in the area of
unstructured-grid applications focuses mainly on computa-
tion and communication in such applications, not on I/O.

We have developed a software system for large-scale sci-
entific data management, called Scientific Data Manager
(SDM) [23], that combines the good features of both file I/O
and databases. SDM provides a high-level, user-friendly in-
terface. Internally, SDM interacts with a database to store
application-related metadata and uses MPI-IO to store the
real data on a high-performance parallel file system. SDM
takes advantage of various I/O optimizations available in
MPI-IO, such as collective I/O and noncontiguous requests,
in a manner that is transparent to the user. As a result, users
can access data with the performance of parallel file I/O,
without having to bother with the details of file I/O.

In a previous paper [23], we described the use of SDM
for regular applications. In this paper, we describe the API,
design, and implementation of SDM for irregular applica-
tions. SDM can efficiently handle the reading and writing of
data in an irregular mesh, as well as the distributionof index
values. SDM also uses the concept of a history file to opti-
mize the cost of the index distribution using the metadata
stored in database. We present performance results with
two irregular applications, a CFD code called FUN3D and
a Rayleigh-Taylor instability code, on the SGI Origin2000
at Argonne National Laboratory.

The rest of this paper is organized as follows. In Sec-
tion 2 we discuss our goals in developing SDM for irreg-
ular problems. In Section 3 we present a typical irregular
problem and describe the detailed implementation issues of



SDM to solve the problem. Performance results on the SGI
Origin2000 at Argonne National Laboratory are presented
in Section 4. We discuss related work in Section 5 and con-
clude in Section 6.

2. Design Objectives

Our main objectives in designing SDM for irregular ap-
plications were to achieve high-performance parallel I/O, to
provide a convenient high-level API, and to optimize the
execution cost of irregular applications.

� High-Performance I/O. To achieve high-performance
I/O, we decided to use a parallel file-I/O system to
store real data and use MPI-IO to access this data.
MPI-IO, the I/O interface defined as part of the MPI-2
standard [10, 19], is rapidly emerging as the standard,
portable API for I/O in parallel applications. MPI-IO
is specifically designed to enable the optimizations that
are critical for high-performance parallel I/O. Exam-
ples of these optimizations include collective I/O, the
ability to access noncontiguous data sets, and the abil-
ity to pass hints to the implementation about access
patterns, file-striping parameters, and so forth.

� High-Level API. Our goal was to provide a high-
level unified API for any kind of application (regular
or irregular) while encapsulating the details of either
MPI-IO or databases. With SDM, user can specify
the data with a high-level description, together with
annotations, and use a similar API for data retrieval.
SDM internally translates the user’s request into ap-
propriate MPI-IO calls, including creating MPI de-
rived datatypes for noncontiguous data [32]. SDM also
interacts with the database when necessary, by using
embedded SQL functions.

� Optimization for Irregular Applications. In irregu-
lar applications, the cost of an index distribution is usu-
ally expensive, in terms of communication and com-
putation. In SDM, after partitioning the index values
among processes, the local index subsets of all pro-
cesses are asynchronously written to a history file, and
the associated metadata is stored in database. When
the same index distribution is needed in subsequent
runs, the index values are read from the history file
using the metadata stored in database, and thereby the
user can avoid repeating the communication and com-
putation for the same index distribution.

3. Implementation

We discuss the SDM API for solving a sample irregular
problem and show how the API is implemented.

3.1. An Irregular Problem and SDM API
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Figure 1. A sample irregular problem and its
solution

Figure 1 shows a typical irregular problem that sweeps
over the edges of an irregular mesh. In this problem, edge1
and edge2 are two arrays representing nodes connected by
an edge, and arrays x and y are the actual data associated
with each edge and node, respectively. The partitioned ar-
rays of edge1, edge2, x, and y contain a single level of
“ghost data” beyond the boundaries to minimize remote ac-
cesses. After the computation is completed, the results p
and q are written to a file in the order of global node num-
bers.

Figures 2 and 3 respectively show the SDM API for writ-
ing the results p and q and for partitioningedge1, edge2,
x, and y among processes to solve the problem described in
Figure 1. We use the term import to distinguish it from a
read operation. A read operation reads the data created in
SDM, whereas an import operation reads the data created
outside of SDM.

3.2. Implementation Details

The partitioning vector is the one generated from a par-
titioning tool, such as MeTis[15, 26]. Each value of the
vector denotes a processor rank where the node should be
assigned. In SDM, the partitioning vector should be repli-
cated among processes. Next, the map array is the one that
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SDM initialize(nameOfApplication);
result = SDM make datalist(2, fp, qg);
result[0].data type = DOUBLE;
SDM associate attributes(2, &result[0]);
handle = SDM set attributes(2, result);
......
/* Partition edge1, edge2, x and y among processes

(Figure 3) */
......
SDM data view(handle, 2, p, &vector, &localNodes);
For (t=1; t � maxStep; t++) f

......
Do computation and produce results p and q;
......
For (each checkpoint) f

SDM write(handle, p, t, pBuf);
SDM write(handle, q, t, qbuf);

g
g
SDM finalize(handle, 2);

Figure 2. SDM API for writing results

specifies the mapping of each element of the local array to
the global array. This map array is created in SDM after
partitioning the indexes using a partitioning vector, or the
map array can be specified by the user.

Figure 2 shows the steps involved in initializing SDM
to solve the problem in Figure 1. Running the problem
on SDM begins by calling the SDM initialize to establish
database connection (for storing metadata). Six database
tables, run table, access pattern table, execution table, im-
port table, index table, and index history table, are created
to store the metadata associated with the application. Since
two data sets, p and q, are produced as a result of compu-
tations and they have the same data type and global size,
these data sets are grouped in a data group to experiment
different ways of organizing data in files. All the metadata
associated with these data sets are stored in a database in
the SDM set attributes.

Figure 3 describes the steps in SDM to partition the in-
dexes and data. The four arrays, edge1, edge2, x, and y,
are imported by creating a data group. Since these arrays
have been created outside of SDM, the user has no con-
trol over the arrays except to read them, by specifying their
data type, appropriate file offset, and length. The user need
not create several data groups to import the arrays. In the
SDM make importlist, the metadata of this imported data
group, including a mechanism for the import (partition), is
stored in the import table for a later use.

In order to partition edge1 and edge2, the
SDM import is called to import the arrays with the

parameters of file handle, their position in the data group,
file offset, file length, and user buffer to hold the data. The

import = SDM make datalist(4, fedge1, edge2, x, yg);
import[2].data type = DOUBLE;
SDM associate attributes(2, &import[2]);
SDM make importlist(handle, 4, import);

SDM import(handle, edge1, 0, totalEdges, tmp);
SDM import(handle, edge2, (totalEdges*sizeof(int)),

totalEdges, tmp+(totalEdges*sizeof(int)));

/* Distribute edge1 and edge2 among processes */
vector = SDM partition table(handle,

partitioning vector, totalNodes);
partitioned edge = SDM partition index(handle,

partitioning vector, totalNodes, &tmp, &vector);

localEdges = SDM partition index size(handle);
localNodes = SDM partition data size(handle);

/* Make a history of this index distribution */
SDM index registry(handle, partitioned edge, vector);

/* Import x */
file offset = 2*totalEdges*sizeof(int);
SDM data view(handle, 1, x, &partitioned edge,

&localEdges);
SDM import(handle, x, file offset, totalEdges, xBuf);

/* Import y */
file offset += totalEdges * sizeof(double);
SDM data view(handle, 1, y, &vector, &localNodes);
SDM import(handle, y, file offset, totalNodes, yBuf);

SDM release importlist(handle, 4);

Figure 3. SDM API for partitioning indexes
and data

SDM import first accesses the index table in the database
to see whether a history file exists with this problem size.
If so, the metadata, such as each process’s partitioned
index size and the history file name, is retrieved from the
index table and index history table, and the control exits
the SDM import. Otherwise, the desired data is imported
to the application. Since edge1 and edge2 are being
imported in a contiguous way, there is no need to specify
data mapping between the file and processor memory. In
the SDM import, the total domain (file length) is equally
divided among processes, and the data in the domain is
contiguously imported into the application. In our example,
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edges 0 and 1 are imported to process 0, and edges 2 and
3 are imported to process 1.

In the SDM partition table, the global partitioning vec-
tor, partitioning vector in Figure 3, is converted to
the local vector, vector in Figure 3, to determine which
node should be assigned to which process. In the example,
nodes 0 and 3 are assigned to process 0, and nodes 1, 2,
and 4 are assigned to process 1.

If there is a history file for this problem size, the
SDM partition index reads the already partitioned edge1
and edge2 from the history file and converts them to the lo-
calized edges by using the partitioning vector. This avoids
the communication cost to exchange each process’s edges
and the computation cost to choose the edges to be assigned.
The disadvantage of the history file is that it cannot be used
if the program is run on a different number of processes
from when the file was created, because the edges and nodes
being assigned to each process dynamically change among
different numbers of processes. One efficient use of the his-
tory file is to create it in advance for the various numbers of
processes of interest. As long as the user runs the applica-
tion with any of those numbers of processes, an appropriate
history can be chosen to reduce communication and com-
putation costs. If there is no history file, the edges in each
process are distributed by reading all the data in parallel and
performing a ring-oriented communication.

If at least a node of an edge has been partitioned to a pro-
cess, the edge is assigned to the process. For example, edge
0 is assigned both to process 0 and 1 because one node of
the edge, edge1 0, has been partitioned to process 0 and
the other node, edge2 1, has been partitioned to process
1. This edge is a ghost edge of both processes being stored
to minimize communication volumes.

For storing the partitioned edges and nodes, including
the ghost ones, a certain amount of memory space is ini-
tially allocated to each process. When the entire memory
space is occupied by the partitioned data, it is automatically
doubled by adjusting the memory size. This prevents the
system from looking through the entire data in two steps,
one step to decide the size of memory space and the other
step to actually store the data in the memory space.

After the edges and nodes are distributed, the edges in
each process are moved to the next process located at a ring
network. In the example, process 0 receives edges 2 and
3, and process 1 receives edges 0 and 1 to partition them
as described above. After finishing the edge distribution,
edges 0 and 2 are assigned to process 0, and edges 0, 1,
and 3 are assigned to process 1. Similarly, nodes 0, 1, and
3 are assigned to process 0, and nodes 0, 1, 2, and 4 are
assigned to process 1. In Figure 3, partitioned edge
contains the edges assigned to each process, and vector
contains the nodes assigned to it. These are the two map
arrays to distribute the physical data associated with each

edge and node, respectively.
If the SDM index registry was executed for the first time

and no history file was created earlier, the metadata of the
partitioned edges, such as the partitioned size of each pro-
cess, is stored in the database tables index table and in-
dex history table. Also, the partitioned edges are asyn-
chronously written to a history file to be retrieved in sub-
sequent runs requiring the same edge distribution. The use
of the SDM index registry is optional. If the user does not
call the SDM index registry, no history file is created after
partitioning the edges.

In order to import and partition data x and y in the
SDM import, the SDM data view must be called to define
the data mapping between a noncontiguous global view of
the file and a local view of the processor memory. Using
the data mapping, in the SDM import, the associated data is
irregularly distributed by calling a collective MPI-IO func-
tion. In the SDM release importlist, the structures being
used to import data in the file handle are free.

Figure 2 shows the steps to write two data sets, p and q,
after completing the computations at each checkpoint. Be-
fore writingp and q, the data mapping to write is defined in
the SDM data view using the map array (vector) associ-
ated with the node partition.

SDM supports three different ways of organizing data in
files. In level 1, each data set generated at each time step
is written to a separate file. This file organization is simple,
but it incurs the cost of a file-open, file-view to define the
visible portion of a file for each process and a file-close at
each time step. In level 2, each data set (within a group) is
written to a separate file, but different iterations of the same
data set are appended to the same file. This method results
in a smaller number of files and smaller file-open and file-
view costs. The offset in the file where data is appended
is stored in the execution table. In level 3, all iterations of
all data sets belonging to a group are stored in a single file.
As in level 2, the file offset for each data set is stored in
the execution table by process 0 in the SDM write function.
The idea is that if a file system has high file-open and file-
close costs, and an application generates a high file-view
cost, as in irregular applications, SDM can generate a very
small number of files. However, if an application produces
a large number of data sets with a large problem size, level 3
file organization would result in very large files, which may
degrade the performance.

Figure 4 depicts the metadata storage in the database and
the organization of data in files in SDM for the example in
Figure 1.

4. Performance Results

We obtained performance results on the SGI Origin2000
at Argonne National Laboratory. The Origin2000 has 128
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Figure 4. SDM execution flow to solve for the
example in Figure 1

processors and 10 Fibre Channel controllers connected to
a total of 110 disks of 9 GBytes capacity each. The file
system on the Origin2000 is SGI’s XFS [13, 30]. For the
results, we used XFS buffered I/O and MySQL [20] to store
the metadata.

The first application template that we benchmarked was
a tetrahedral vertex-centered unstructured grid code devel-
oped by W. K. Anderson of the NASA Langley Research
Center [1]. This application uses a partitioning vector gen-
erated from MeTis to partition the nodes and edges in a
mesh. To evaluate SDM ported to the application, we used
about 18M edges and 2M nodes. At the initial stage, the
application imports edges, four data arrays associated with
edges, and another four data arrays associated with nodes.
The total imported data size was about 807 MBytes. As
a result of computations, the application wrote about 21
MBytes of four data sets each and 105 MBytes of a single
data set. Using 64 processors, we iterated the application
template two time steps; at each time step, five data sets
were written to files.

The second application template that we ran was a
Rayleigh-Taylor instability application [9] that is motivated
by a joint project between the University of Chicago and Ar-
gonne to study thermonuclear flashes on astrophysical ob-
jects. Whenever the current time reaches a certain point,
the application writes two data sets: a single node data set

associated with vertices in a mesh, and a triangle data set
associated with triangles on tetrahedral faces. In the appli-
cation template, we wrote about 36 MBytes of the node data
set and about 74 MBytes of the triangle data set at each time
step. Since we iterated the template five times, the total data
size written was approximately 550 MBytes.

4.1. Results for FUN3D
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Figure 5. Execution time for partitioning in-
dices and data in FUN3D

Figure 5 shows the bandwidth to import and partition
18M edges, four data sets each of 144 MBytes of data as-
sociated with edges, and another four data sets each of 21
MBytes of data associated with nodes. The original version
of the application—without using SDM—performs all the
I/O operations by a single process (process 0), which then
broadcasts data to other processes. SDM performs I/O in
parallel from all processes using MPI-IO. The bar labeled
index distri. in Figure 5 shows the communication
and computation costs to partition the edges after import-
ing them to the application. Also, the bar labeled import
shows the cost of reading the edges and eight data arrays.

The original application reads the edges in two steps: one
step to determine the amount of memory to store the parti-
tioned edges and the other step to actually read the edges.
SDM, however, extends the allocated memory dynamically
as needed (using C function realloc) and is therefore
able to read the partitioned edges in a single step. This con-
tributes to the reduced cost of index distri. when
using SDM. When partitioning the edges with a history file,
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the cost of index distri. is nothing but reading the
history file of the edges in a contiguous way, including the
database cost to access the metadata. Since the history file
contains the already partitioned edges, there is no need to
import the edges; hence, the read cost in import is re-
duced.
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Figure 6. I/O bandwidth for reading and writ-
ing data in FUN3D

Figure 6 shows the I/O bandwidth for writing and then
reading back the data generated from the application using
64 processors. The total data size was approximately 379
MBytes. In level 1, each data array is written to separate
files, resulting in the creation of 10 different files. Each
time the data array is written to files, level 1 requires the
cost for opening a file and defining an MPI-IO file view to
access the data from the portion of the file pointed by the
global file offset. In level 2, however, each data array gen-
erated at each time step is appended in five files, generat-
ing five file-open and file-view costs. This reduced number
of files improves the I/O performance slightly. In level 3,
only two files are generated, resulting in the best I/O per-
formance among the three file organizations. On the SGI
Origin2000, the difference between three file organizations
is not significant because the file-open cost is small.

4.2. Results of RT Application

Figure 7 shows the I/O bandwidth for writing approxi-
mately 550 MBytes of data. In the original application, the
write operation is performed sequentially. In other words,
after seeking the starting position in a file, processes write

their local portion of data one by one. When we ported the
application to SDM, the I/O performance increased signifi-
cantly because of the I/O optimizations of MPI-IO.

In SDM, we wrote the node data set according to the
global node number of the partitioned nodes, and wrote the
triangle data set contiguously. Since two data sets are writ-
ten to files separately, SDM supports two different ways of
file organization: level 1 and level 2/3 (levels 2 and 3 are
identical in this case). As can be seen in Figure 7, on the
SGI Origin2000, changing the file organization does not af-
fect the I/O performance, since the cost of file-open and
file-view is very low.

When the number of processors increases to write the
same data size, we can see the degradation of the I/O per-
formance. With 32 processors, the data size being written
at each time step is about 1 MByte for the node data set
and 2 MBytes for the triangle data set. If the number of
processors goes up to 64, the buffer size of each process
becomes smaller, resulting in the performance reduction.
Clearly, there is an optimal buffer size that shows the best
I/O performance.
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5. Related Work

Several efforts have sought to optimize I/O in parallel file
systems and runtime libraries [3, 5, 6, 14, 16, 18, 22, 27, 31].
SRB (Storage Resource Broker) [2] provides an uniform in-
terface to access various storage systems, such as file sys-
tems, Unitree, HPSS and database objects. However, it does
not fully support the optimizations implemented in MPI-
IO. Shoshani et al. [28, 29] describe an architecture for op-
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timizing access to large volumes of scientific data stored
on tapes. The Active Data Repository [17] and DataCut-
ter [4] optimize storage, retrieval, and processing of very
large multidimensional datasets. The main difference be-
tween our work and other efforts in I/O is that SDM aims to
combine the good features of parallel file I/O and databases,
whereas other efforts focus on either parallel I/O or data
management, not both.

6. Summary

We have described the SDM system, API, and imple-
mentation for I/O in irregular applications. SDM provides
an easy-to-use user interface for managing large data sets
and internally uses MPI-IO for high-performance I/O and a
database for storing metadata. We studied the performance
of SDM using two irregular applications: FUN3D and RT.
When we ported both applications to use SDM, there was a
significant improvement in I/O performance compared with
the original application. Also, we observed that using a his-
tory file for the index distribution helped to reduce the com-
putation and communication costs. However, changing the
SDM file organization from level 1 to level 3 did not greatly
affect the performance on the SGI Origin2000, because of
its low file-open and file-view costs.

We plan to develop SDM further to support visualiza-
tion applications and to investigate whether SDM can ef-
fectively be used as a strategy for implementing libraries
such as HDF [21] and netCDF [33].
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